Seleccionado por: Alicia
Rellstab, C., F. Gugerli, A. J. Eckert, A. M. Hancock, and R.
Holderegger. 2015. A practical guide to environmental association
analysis in landscape genomics. Molecular Ecology 24:4348–4370.
Abstract
Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele–environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies.
Se trata de una revisión de los métodos para realizar análisis de asociación ambiental, que incluye métodos estadísticos, métodos moleculares, diseño experimental, manejo de datos ambientales y otros. Lo escogí porque sé que muchos de ustedes están realizando o podrían realizar este tipo de análisis. Sugiero entonces que la dinámica del próximo viernes sea un poco diferente a lo normal:
Propongo que cada quién piense como podría aplicar estos métodos en su proyecto y el viernes nos lo comente de forma breve. Quienes no estarán utilizando este tipo de análisis podrían comentar si les parece o no lo que sugirieron los otros.